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Abstract – Given human-related changes, quality distributional data are required for consistent conservation.
Still, the lack of proper biogeographic information is a major setback for many groups. Here, we use new
occurrences for Aglae caerulea in the Cerrado to model its potential distribution. We used Maximum Entropy
(MaxEnt) and Genetic Algorithm for Rule-Set Production (GARP) algorithms in different modeling runs and
both previous and new A. caerulea occurrences to predict this species distribution. Models which used only the
previous A. caerulea’s records did not predicted the new Cerrado records, while those where we used the latter
did predict the new ones as minimally suitable. A. caerulea distribution significantly increased towards the
Cerrado according to both MaxEnt and GARP algorithms. Gallery forests are important dispersal alternatives
for several species dwelling the Amazon and the Atlantic forest. Niche models of other rare Euglossini bees are
advised to better evaluate their distributions.

Aglae caerulea / Amazon / Cerrado / dispersal corridor /Wallacean shortfall / species distributionmodeling

1. INTRODUCTION

In a continuously changing world, which is
directly and indirectly affected by human activi-
ties (Tylianakis et al. 2008; Dobrovolski et al.
2011), high-quality distributional data are essen-
tial to help on the task of setting priorities and
efficient conservation actions (Myers et al. 2000;

Whittaker et al. 2005; Brooks et al. 2006). Still,
the Wallacean shortfall, i.e., lack of proper
biogeographic information, is one of the major
setbacks hampering conservation actions (Bini et
al. 2006). Such situation is even worse in mega-
diverse but poorly sampled tropical regions
(Newbold 2010; Kamino et al. 2011), which
usually lack extensive biogeographic information
but suffer deep and fast environmental changes
(Bawa et al. 2004; Hong and Lee 2006).

Beside their diversity, insects and other terres-
trial invertebrates play several important

Corresponding author: D.P. Silva,
daniel.paivasilva@gmail.com
Manuscript Editor: Klaus Hartfelder

Apidologie (2013) 44:673–683 Original article
* INRA, DIB and Springer-Verlag France, 2013
DOI: 10.1007/s13592-013-0216-7

http://dx.doi.org/10.1007/s13592-013-0216-7


ecosystemic roles (e.g., pollination, plague control,
nutrient cycling). However, they have been usually
neglected in conservation actions (Diniz-Filho et
al. 2010a; Cardoso et al. 2011). Even insect groups
with extensive taxonomic, biological, and ecolog-
ical data available (e.g., ants, bees, odonates, and
butterflies) lack consistent biogeographic data
(Diniz-Filho et al. 2010a; Vianna and De Marco
Jr 2012). Despite such problems, Diniz-Filho et al.
(2010a) provided an optimistic view on how to use
theoretical approaches and modern methods to
conserve insects, such as ecological niche models
(ENM). Based on statistically or derived response
surfaces, ENMs relate presence records of a given
species to the available predictor variables from
those places where it was sampled to predict
environmentally suitable areas for its occurrence
(Guisan and Zimmermann 2000). Consequently, it
is possible to fill gaps in the biogeographic
knowledge concerning species distribution and
improve the implementation of conservation ac-
tions (Nóbrega and De Marco Jr 2011).

Considering that species distribution is
delimited by the intersection of environmen-
tally suitable, biologically available, and
biogeographically/historically reachable habi-
tats (Soberón 2007), ENMs are useful tools in
the attempt to overcome Wallacean shortfall
and implement insect-oriented biogeography
conservation plans (Diniz-Filho et al. 2010a).
ENM techniques have been used quite often to
study insects, particularly due to the following
reasons: (1) determine potential distribution of
taxa given new occurrences (Almeida et al. 2010),
(2) assess suitable areas for future samplings
(Diniz-Filho et al. 2010b), (3) pinpoint areas for
the implementation of new conservation units
(Nóbrega and De Marco Jr 2011), and (4)
determine areas prone to invasion of alien species
(Mata et al. 2010) or suitable for species distribu-
tion under different global warming scenarios
(Giannini et al. 2012).

Considering new distributional data for the
orchid bee Aglae caerulea Lepeletier and
Serville (Apidae: Euglossini) outside its previ-
ously known core Amazonian distribution (see
below), here we use both previous and new
distribution data to deal with two questions.

Initially, we assess whether previous occur-
rences of A. caerulea are sufficient to predict
the new information obtained for the Cerrado
biome and a doubtful Panamanian record
(Moure 1967; Cameron 2004; Michener 2007).
If they do, dispersal of A. caerulea from its core
distribution can be considered the only process
accounting for the new data. If they do not, we
evaluate whether the inclusion of the new
occurrences increases the total distribution for
this species, pinpointing new suitable areas
outside the Amazon for A. caerulea. Second,
considering all A. caerulea occurrences, we
evaluate its possible dispersal paths from its
core distribution in the Amazon basin through
the Cerrado, with particular attention to the role
of riparian areas of large rivers.

2. MATERIAL AND METHODS

2.1. A. caerulea and its known distribution

Different from the other Euglossini bees, the rarely
sampled A. caerulea has a long (23–25 mm long),
slender, and flattened body and slender hind legs
(Cameron 2004). The only bionomical observations
available for this species indicate that it parasitizes
nests of Eulaema bees (Myers 1935). Given its
rareness in entomological collections and in
Euglossini surveys using scent baits, it is considered
to be a rare species in nature (Cameron 2004). Its
distribution has been considered to be mostly
restricted to the Amazon basin (Cameron 2004;
Michener 2007). Nevertheless, this species has been
lately sampled outside its Amazon core distribution in
four different occasions (Anjos-Silva et al. 2006, and
three new occurrences for the state of Goiás, Brazil,
sampled by Silva, DP). Additionally, Moure (1967)
reported its presence in Panama. Nonetheless, such
occurrence has been flagged as uncertain since no
other specimen of A. caerulea was sampled in that
country again, even after decades of new surveys
after the date of the first record (Cameron 2004).

We also compiled A. caerulea records from museum
collections [(1) DZUP—Coleção Entomológica
Padre J.S. Moure, Universidade Federal do Paraná,
Curitiba, PR, Brazil; (2) RPSP—Coleção Camargo,
Universidade de São Paulo, Ribeirão Preto, SP, Brazil;
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(3)MZUSP—Muzeu de Zoologia, Universidade de São
Paulo, São Paulo, SP, Brazil; (4) COENTOL—Coleção
Entomológica do Departamento de Biologia,
Universidade do Estado de Mato Grosso, Cáceres,
MT, Brazil], online data bases [(1) Discover Life Bee
Species Guide and World Checklist (http://
www.discover-life.org); (2) Species Link (http://
splink.cria.org.br)], and literature (Morato 2001; Otero
and Sandino 2003; Anjos-Silva et al. 2006). A total of
41 occurrences for A. caerulea were compiled, most of
them in the Amazon basin, but with two records from
the Choco region, in western Ecuador and southwestern
Colombia. For records lacking the exact sampling site
information, we used Google Earth (Google Inc. 2012)
to find city center coordinates as a proxy information for
sampling sites. The geographical coordinates of the
three new A. caerulea occurrences found in Brazil may
be found in the Supplementary Materials section
(Table S1).

2.2. Environmental data

We derived seven environmental variables to be
used in our ENM procedures and produce A. caerulea
distribution models. Six of them [annual temperature,
temperature seasonality (coefficient of variation),
mean temperature of the driest quarter, annual
precipitation, precipitation seasonality (coefficient of
variation), and precipitation of the warmest quarter]
were obtained from WorldClim (Hijmans et al. 2005;
http:\\www.worldclim.org). The last variable (terrain
slope) was derived from Hydro-1K global digital
elevation model (http://eros.usgs.gov). We selected
these variables since they were already used as
climate predictors in other studies which modeled
insect distributions (e.g., Almeida et al. 2010; Serra et
al. 2012). Once some of our occurrences were related
to city center coordinates instead of actual GPS
coordinates, we re-scaled all variables to a 5-min
resolution (0.0833º ≈ 8 km).

In order to define the location of the new A. caerulea
occurrences in the species environmental space, we
performed a principal components analysis (PCA) with
all variables. Once all environmental variables had
different units, prior to the analysis, we standardized
them. We considered the Kaiser–Guttmann criterion
(eigenvectors with eigenvalues higher than 1; Peres-
Neto et al. 2005) to retain the most important PCA

eigenvectors. The cutoff loading to consider an environ-
mental variable as influent in the PCA analysis was 0.6.

2.3. Modeling procedures and model
evaluation

We divided the occurrence dataset into three catego-
ries: (1) “Previous” (n=36), (2) “Cerrado” (n=4), and
(3) “Doubtful” Panamanian record (n=1). In a first
modeling run, we randomly split the previous and
mostly Amazonian occurrences into 70 %:30 % train-
ing/testing subsets and evaluated whether the training
subset was able to predict the newer and the doubtful A.
caerulea occurrences. In a second modeling run, we
included all the new Cerrado occurrences in the training
subset and reevaluated A. caerulea distribution consid-
ering a testing subset composed by 30 % of all A.
caerulea occurrences (except the newer and the
Panamanian ones). Finally, we used all occurrences to
predict the species distribution. The doubtful occurrence
was never used in any of the modeling procedures. The
modeling procedures are summarized in Figure S1.

We trained A. caerulea distribution models with two
widely used algorithms: Maximum Entropy
implemented in MaxEnt (Phillips et al. 2006; Phillips
and Dudik 2008) and the Genetic Algorithm for Rule-
Set Production (GARP; Stockwell and Peters 1999)
implemented in openModeller Desktop v.1.1.0 (Munoz
et al. 2011). MaxEnt is a machine-learning presence/
pseudo-absence method which is very reliable when
occurrence dataset have few and/or biased records
(Pearson et al. 2007). We only modeled A. caerulea
distributions with linear and quadratic features selected,
to produce simpler biological models (Elith et al. 2011).
GARP is a non-deterministic algorithm based in a
random set of mathematical rules which may be
interpreted as the limiting environmental conditions
determining species occurrences (Stockwell and Peters
1999). Defining the area within which the species may
potentially reach is an important step, while modeling
species distribution, once the potential area the species
may reach, is an important feature which affects the
development of its ecological niche (Barve et al. 2011).
Here, we trained the A. caerulea’s distribution models
using the whole extent of South America as the species
maximum potential ranges. Although different biogeo-
graphic regions may be contemplated within this region
(e.g., Amazon basin, Cerrado, Mata Atlântica; Nemésio
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and Silveira 2007), once the species was already
sampled in two of those, to train the models considering
the whole South American continent was advised and
methodologically indicated.

Following Liu et al. (2011), we used both area under
the receiver–operator curve (AUC) and true skilled
statistics (TSS) to assess models performance. The
AUC is a threshold-independent statistics varying from
0 to 1. Values around 0.5 represent distribution models
no better than random and values around 1 represent a
perfect fitting between the observed and the predicted
species distribution. Acceptable distribution models are
those with values higher than 0.7. TSS is a threshold-
dependent statistics which varies from −1 to +1
(Allouche et al. 2006). TSS values near 0 or negative
represent distributions no better than random, while
values equal to +1 represent a perfect agreement
between the observed and the predicted distribution.
We used 10,000 random pseudo-absences during model
evaluation procedures.

We used the lowest predicted suitability value
associated with a given observed presence record
(lowest presence threshold—LPT; Pearson et al.
2007), to determine A. caerulea distribution generated
by each modeling algorithm. Ecologically speaking, the
LPT identifies the pixels predicted to be as minimally
suitable for the species occurrence as its actual observed
records. For the final A. caerulea distribution, we used a
single mean consensus map between both modeling
algorithms in order to determine A. caerulea distribu-
tion, considering the LPT values that each independent
model (Maximum Entropy and GARP) obtained when
all occurrences (including the new Cerrado records)
were used. This consensus method considers the
separated values in each grid cell for all predictions
obtained from different modeling algorithms to deter-
mine the mean modeled species distribution. This
method was considered to be one of the most robust
while determining the agreement of species distribu-
tions (Marmion et al. 2009). For the sake of discussing
the distribution of A. caerulea, considering its known
occurrences and the known Euglossini sampling effort
in South American, we also show the ensemble
distribution obtained from the threshold derived from
the “receiver–operator curve” (ROC; Liu et al. 2011).
While LPT minimizes omission but maximizes com-
mission errors, ROC balances both errors and produces
smaller distributions when compared LPT.

3. RESULTS

We retained three eigenvectors from our PCA
analysis (Figure 1; Table S2). Nevertheless, we
only show the results comparing the first two
eigenvectors because such interpretation is
simpler and the other comparisons (PC1 vs.
PC3 and PC2 vs. PC3) had similar results
(Figure S2A–B). All new occurrences from
Cerrado were separated from all previously
known occurrences for A. caerulea. On the
other hand, the doubtful Panamanian occurrence
was always among the previous records for the
modeled species (Figures 1 and S2A–B).

The four new A. caerulea occurrences con-
siderably increased its distribution range, espe-
cially considering their distances to the nearest
occurrence records previously sampled in the
Amazon [∼2,000 km for the occurrences in
Goiás and ∼1,000 km for the one sampled by
Anjos-Silva et al. (2006)]. Generally, the distri-
bution models produced only with the previous
occurrences showed a fair to good performance
when considering both TSS and AUC values,
respectively (Table I).

The doubtful Panamanian record was pre-
dicted as suitable for A. caerulea in all models
(Figure 2). On the other hand, the models using
only the previous occurrences as the training
subset had a low predictive power regarding the
new occurrences for the Cerrado savanna
(Figure 2a–b). The model generated only with
the previously known A. caerulea occurrences
predicted areas in northern Peru, southeastern
Colombia, northeastern Ecuador, southern
Venezuela, and Amazonas and Para states in
Brazil as suitable for A. caerulea.

The inclusion of the new Cerrado records had
a great effect on models performance (Table I),
with overall decreases in both AUC and TSS
values. Although the new occurrences were
predicted as minimally suitable in both model-
ing algorithms, they increased A. caerulea
potential distribution by almost 30 and 50 %,
according to GARP and MaxEnt, respectively
(Figure 2c–d). After their inclusion, we ob-
served additional range increases towards the
Cerrado savanna and Bolivia. The Panamanian
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occurrence was still predicted as suitable in both
modeling algorithms and in the A. caerulea
consensus map (Figure 3a, b).

Considering the consensus maps, although the
LPT threshold minimally predicted the new

occurrences records for A. caerulea within the
Cerrado biome (Figure 3a), it also increased its
distribution into arid areas in northwestern
Venezuela and northern Colombia, where the
species is assumed to be absent. On the other

Figure 1. Principal components analysis results showing the separation of the new Cerrado occurrences
(asterisks) from the previous ones (black circles) recorded for A. caerulea. Note that the doubtful Panamanian
occurrence (diamonds) is suitable for A. caerulea occurrence. The arrows represent which environmental
variables were positively and negatively related to each retained eigenvector. The percentages represent the
amount of variation explained by each eigenvector.

Table I. Performance of A. caerulea models considering training subsets without and with the new occurrences
from the Cerrado. The doubtful Panamanian occurrence was not used in the models.

Amazonian occurrences All occurrences All occurrences

(70:30) (70:30) (100:100)

Modeling algorithm AUC TSS AUC TSS AUC TSS

MaxEnt 0.769 0.609 0.699 0.424 0.816 0.532

GARP 0.839 0.598 0.769 0.422 0.858 0.487

Numbers in brackets refer to the proportion of occurrences used in the training/test subsets in all modeling procedures

TSS values consider the LPT threshold, SD standard deviation
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hand, although the ROC threshold minimized A.
caerulea distribution in those areas, it
did not predict the new occurrences sampled in
the Cerrado as suitable for A. caerulea distribu-
tion. Nevertheless, neighboring areas near those
new occurrences were predicted as suitable
(Figure 3b).

4. DISCUSSION

In this study, we presented three new occur-
rences for A. caerulea, a rare Euglossini bee
species from South America, and modeled its
distribution considering these additional records.
We showed that the doubtful Panamanian occur-

rence (Cameron 2004) is suitable as an occurrence
record and that A. caerulea distribution range,
previously believed to be restricted mostly to the
Amazon basin (Cameron 2004), also includes
some portions of the Brazilian Cerrado. These
results have important implications for under-
standing the dispersal and distribution of
Euglossini bees in South America.

As the second largest biome and the largest
savanna in South America (Ab’Saber 1977), the
Cerrado separates two important biomes: the
Amazon and the Atlantic forests. Despite its
usual xeric-like environment, it commonly bears
evergreen gallery forests near rivers and stream-
lets. Studies with plants (Méio et al. 2003),

Figure 2. Distribution models generated by MaxEnt (a, c) and GARP (b, d) using only the previous (left) or
both the previous and the newer occurrences from the Cerrado (right) in the training subset to predict A.
caerulea potential distribution. Circles refer to the previous A. caerulea’s known records; stars refer to the new
occurrences found in the Cerrado Biome; question marks refer to the doubtful Panamanian occurrence.
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birds (Silva 1996), butterflies (Brown Jr 1987;
1992), mammals (Redford and Da Fonseca
1986), and solitary bees (Aguiar and Melo
2007) have already suggested the importance
of the gallery forest while facilitating dispersal
of species dwelling either in the Amazon or in
the Atlantic Forest. In Cerrado, gallery forests
provide important habitat conditions which
allow Euglossini bees (and insects associated
with mesic environments) to easily disperse
(Moura and Schlindwein 2009). They also
provide humidity for the development and
establishment of orchid plant species, which
are generally used by the males of Euglossini
bees as scent sources (Dressler 1982). Such
dependence on the gallery forest to disperse in
the Cerrado may be the reason why other
insects species previously thought only to

inhabit in the Amazon were recently sampled
in Cerrado (see Almeida et al. 2010 for an
example). Although large rivers within the
Cerrado (e.g., Araguaia and Paranã rivers) may
act as important dispersal barriers for non-flying
organisms (Cáceres et al. 2008), such barriers
may not restrict the dispersal of Euglossini bees,
given their excellent flight capacities and un-
common vagility (Janzen 1971).

The distribution model trained only with the
previous, mostly Amazonian, occurrences did not
predict the newer Cerrado records and even the
model with all occurrences predicted the observed
Cerrado occurrences as minimally suitable for A.
caerulea. The newer records appear to be outliers in
the environmental niche parameters of the knownA.
caerulea records, which explain the low predictive
power for these occurrences. Similar results were

Figure 3. Mean ensemble forecast produced by MaxEnt and GARP considering both a LPT and b ROC
thresholds. Note that semi-desert areas in northern Colombia and northwestern Venezuela are not predicted as
suitable when we consider only the ROC threshold. The depicted polygon in a and b refers to areas where
future surveys for A. caerulea in gallery forests should take place. Circles refer to the previous A. caerulea’s
known records; stars refer to the new occurrences found in the Cerrado Biome; question marks refer to the
doubtful Panamanian occurrence.
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also observed for the modeled distribution of other
Amazonian species sampled within the Cerrado
(Almeida et al. 2010), aswell as for other Euglossini
bees sampled outside their previously known ranges
(Hinojosa-Díaz et al. 2009).

At first, these results may indicate that A.
caerulea populations in Cerrado are in fact sink
populations (Pulliam and Danielson 1991;
Pulliam 2000), since the suitability in these areas
support the prediction of the occurrence under the
LPT threshold (but at minimal values) and was
predicted as absent under the ROC threshold.
Considering the distribution of habitat suitability,
only sites deep in the Amazon (areas with high
habitat suitability) would be considered as source
populations. Nevertheless, the predicted suitability
may not correspond to the true habitat suitability, as
perceived by A. caerulea bees. For instance,
Anjos-Silva et al. (2006) sampled eightA. caerulea
bees in a gallery forest within the Cerrado, with
vegetational features similar to both the Amazon
and the Atlantic forest (sensu lato) (Pinto and
Oliveira-Filho 1999). In Cerrado gallery forests,
either minimally or not predicted as suitable, we
sampled two specimens of A. caerulea (Silvânia
County, Goiás state). Therefore, the dependence on
gallery forests of Euglossini bees (Moura and
Schlindwein 2009) may significantly increase A.
caerulea habitat suitability within the Cerrado, a
biome which naturally harbor low Euglossini bees
diversity (Nemésio and Silveira 2007).

A biased sampling effort in different habitats
(Kamino et al. 2011) may underestimate species
distribution, affecting the predicted suitability in
the new occurrence records (Almeida et al. 2010).
Therefore, in order to validate both models and
generate thresholds for binary prediction based in
true absences instead of computer-generated
pseudo-absences, future surveys should be
performed either in areas where model suitability
was low or where the species does not occur.

Considering the known Euglossini sampling
effort in South America, the arid areas in northern
Colombia and northwestern Venezuela, as well as
the dry forests in northwestern Peru and southern
Ecuador, are good candidates for further evaluation
of the models, since they seem too dry to be
considered suitable for the occurrence ofA. caerulea

(GAR Melo, unpublished data). Nevertheless,
considering the strong association of
Euglossini with mesic environments, future
sampling surveys in the humid formations
found in those dry areas should be consid-
ered in order to validate model predictions,
independently of the thresholds and modeling
algorithms used. Future field surveys should
also take place in gallery forests found in the area
comprehending the southeastern Para and
Amazonas states, as well as northern Mato
Grosso and Tocantins states, areas predicted as
suitable in the consensus maps considering both
the LPT and the ROC thresholds (polygon shown
in Figure 3a, b).

Although standardized sampling protocols
may be considered inefficient on sampling rare
species, the continuous use of ENM techniques,
whenever new occurrences for rare species are
discovered, may improve our knowledge on
their distribution range. Such strategy for rare
species has been used with success elsewhere
(Raxworthy et al. 2003; Pearson et al. 2007; De
Siqueira et al. 2009) and should be used
continuously as it will optimize to a large extent
the amount of resources invested in field
surveys (Guisan et al. 2006). Similar ap-
proaches to this study should also be considered
to other South American Euglossini species
sampled outside their previously known distri-
butions (Anjos-Silva 2008; Silva and Rebêlo
2009), in order to properly assess the distribu-
tion patterns of these species and pinpoint not-
sampled but potentially fruitful areas for future
surveys. This suggestion is particularly appro-
priate for areas of poor knowledge on
Euglossini diversity, such as those in the
Brazilian Cerrado (Nemésio and Silveira
2007). Despite plenty of studies on Euglossini
bees in humid environments from South
America (e.g., Mata Atlântica and the Amazon
Forest), very few systematic studies have been
carried out in dry areas of the continent, as well
as in gallery forests within these biomes, which
may bear a still unknown Euglossini diversity.
Therefore, we advise future surveys of
Euglossini bees to be conducted in gallery
forests of such environments in order to fill a

680 D.P. Silva et al.



gap on our current knowledge of the distribu-
tion patterns of orchid bees.
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